Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.137
Filtrar
1.
BMC Complement Med Ther ; 24(1): 71, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303002

RESUMO

BACKGROUND: Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS: Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-ß1) were determined. RESULTS: MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-ß1/Smad pathway. CONCLUSION: Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.


Assuntos
Hipertireoidismo , Hepatopatias , Melissa , Extratos Vegetais , Animais , Ratos , Expressão Gênica , Hipertireoidismo/complicações , Hipertireoidismo/tratamento farmacológico , Inflamação/metabolismo , Fígado , Melissa/química , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Hormônios Tireóideos/metabolismo , Tiroxina/genética , Tiroxina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Hepatopatias/etiologia , Hepatopatias/terapia
2.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291025

RESUMO

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Assuntos
Glândula Tireoide , Tiroxina , Humanos , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Estudo de Associação Genômica Ampla , Tri-Iodotironina/metabolismo , Tireotropina/metabolismo
3.
Behav Brain Res ; 461: 114864, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38220060

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by degeneration of the striatum; it results in oxidative stress and motor deficits. Thyroid hormones regulate oxidative metabolism. In the present study, we evaluated the effect of administration of levothyroxine (LT-4) on neurobehavioral, oxidative stress, and histological changes in a rat model of HD. Forty-eight Wistar male rats were divided into the following six groups (n = 8): Group 1 (control) received physiological saline intraperitoneally (ip). Groups 2 and 3 received L-T4,30 and L-T4100 (µg/kg, ip, respectively) daily for 7 days. Group 4 (HD) received 3-nitropropionic acid (3-NP) (25 mg/kg, ip) daily for 7 days. Groups 5 and 6 received L-T4,30 and L-T4100 (µg/kg, ip, respectively) 30 min after 3-NP (25 mg/kg, ip) injection for the same duration. On the 8th day, behavioral parameters were evaluated with the Rotarod, Narrow beam walk, and Limb withdrawal tests. Oxidative markers such as Malondialdehyde (MDA) and Glutathione (GSH) levels and Superoxide dismutase (SOD) activity, in striatum tissue were measured. Moreover, striatum tissues were analyzed by Hematoxylin-eosin staining for histological alterations. We found that 3-NP administration caused motor incoordination and induced oxidative stress increased but reduced free radical scavenging. Also, increased amounts of lipid peroxides caused striatal damage as shown by histopathological evaluation. Administration of L-T4 led to increased falling time in the Rotarod, but reduced the time taken in Narrow beam walking and Limb withdrawal test. Furthermore, L-T4 increased antioxidant activity, decreased lipid peroxidation and ameliorated 3-NP-induced degeneration in neurons.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Ratos Wistar , Tiroxina/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Atividade Motora , Estresse Oxidativo , Nitrocompostos/toxicidade , Propionatos/farmacologia , Glutationa/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Corpo Estriado/metabolismo
4.
J Clin Endocrinol Metab ; 109(2): 413-423, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37671625

RESUMO

BACKGROUND: Macroencapsulated pancreatic endoderm cells (PECs) can reverse diabetes in rodents and preclinical studies revealed that thyroid hormones in vitro and in vivo bias PECs to differentiate into insulin-producing cells. In an ongoing clinical trial, PECs implanted in macroencapsulation devices into patients with type 1 diabetes were safe but yielded heterogeneous outcomes. Though most patients developed meal responsive C-peptide, levels were heterogeneous and explanted grafts had variable numbers of surviving cells with variable distribution of endocrine cells. METHODS: We measured circulating triiodothyronine and thyroxine levels in all patients treated at 1 of the 7 sites of the ongoing clinical trial and determined if thyroid hormone levels were associated with the C-peptide or glucagon levels and cell fate of implanted PECs. RESULTS: Both triiodothyronine and thyroxine levels were significantly associated with the proportion of cells that adopted an insulin-producing fate with a mature phenotype. Thyroid hormone levels were inversely correlated to circulating glucagon levels after implantation, suggesting that thyroid hormones lead PECs to favor an insulin-producing fate over a glucagon-producing fate. In mice, hyperthyroidism led to more rapid maturation of PECs into insulin-producing cells similar in phenotype to PECs in euthyroid mice. CONCLUSION: These data highlight the relevance of thyroid hormones in the context of PEC therapy in patients with type 1 diabetes and suggest that a thyroid hormone adjuvant therapy may optimize cell outcomes in some PEC recipients.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Peptídeo C/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Endoderma/metabolismo , Endoderma/transplante , Glucagon/metabolismo
5.
Toxicol In Vitro ; 96: 105763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142784

RESUMO

In vitro assays remain relatively new in exploring human relevance of liver, in particular nuclear receptor-mediated perturbations of the hypothalamus-pituitary-thyroid axis seen in rodents, mainly in the rat. Consistent with in vivo data, we confirm that thyroid hormone thyroxine metabolism was 9 times higher in primary rat hepatocytes (PRH) than in primary human hepatocytes (PHH) cultured in a 2D sandwich (2Dsw) configuration. In addition, thyroxine glucuronide (T4-G) was by far the major metabolite formed in both species (99.1% in PRH and 69.7% in PHH) followed by thyroxine sulfate (T4-S, 0.7% in PRH and 18.1% in PHH) and triiodothyronine/reverse triiodothyronine (T3/rT3, 0.2% in PRH and 12.2% in PHH). After a 7-day daily exposure to orphan receptor-mediated liver inducers, T4 metabolism was strongly increased in PRH, almost exclusively through increased T4-G formation. These results were consistent with the inductions of glucuronosyltransferase Ugt2b1 and canalicular transporter Mrp2. PHH also responded to activation of the three nuclear receptors, with mainly induction of glucuronosyltransferase UGT1A1 and canalicular transporter MRP2. Despite this, T4 disappearance rate and secreted T4 metabolites were only slightly increased in PHH. Overall, our data highlight that cryopreserved hepatocytes in 2Dsw culture allowing long-term exposure and species comparison are of major interest in improving liver-mediated human safety assessment.


Assuntos
Tiroxina , Tri-Iodotironina , Humanos , Ratos , Animais , Tiroxina/metabolismo , Ratos Wistar , Tri-Iodotironina/farmacologia , Tri-Iodotironina Reversa/metabolismo , Hepatócitos/metabolismo , Glucuronosiltransferase/metabolismo
6.
Front Endocrinol (Lausanne) ; 14: 1267612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908753

RESUMO

Purpose: Thyroid hormones sensitivity is a newly proposed clinical entity closely related with metabolic health. Prior studies have reported the cross-sectional relationship between thyroid hormones sensitivity and diabetes; however, the longitudinal association is unclear to date. We aimed to explore the relationship between impaired thyroid hormone sensitivity at baseline and diabetes onset using a cohort design. Methods: This study enrolled 7283 euthyroid participants at the first visit between 2008 and 2009, and then annually followed until diabetes onset or 2019. Thyrotropin (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) were measured to calculate thyroid hormone sensitivity by thyroid feedback quantile-based index (TFQI), Chinese-referenced parametric thyroid feedback quantile-based index (PTFQI), thyrotropin index (TSHI), thyrotroph thyroxine resistance index (TT4RI) and FT3/FT4 ratio. Cox proportional hazard model and cross-lagged panel analysis were used. Results: The mean baseline age was 44.2 ± 11.9 years, including 4170 (57.3%) male. During a median follow-up of 5.2 years, 359 cases developed diabetes. There was no significant association between thyroid hormones sensitivity indices and diabetes onset, and adjusted hazard ratios per unit (95% CIs) were 0.89 (0.65-1.23) for TFQI, 0.91 (0.57-1.45) for PTFQI, 0.95 (0.70-1.29) for TSHI, 0.98 (0.70-1.01) for TT4RI and 2.12 (0.17-5.78) for FT3/FT4 ratio. Cross-lagged analysis supported the temporal association from fasting glucose to impaired thyroid hormones sensitivity indices. Conclusions: Our findings could not demonstrate that thyroid hormones sensitivity status is a predictor of diabetes onset in the euthyroid population. Elevated fasting glucose (above 7.0 mmol/L) appeared to precede impaired sensitivity indices of thyroid hormones.


Assuntos
Diabetes Mellitus , Glândula Tireoide , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Hormônios Tireóideos/metabolismo , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Tireotropina/metabolismo , Glucose/metabolismo
8.
Nat Commun ; 14(1): 7090, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925436

RESUMO

Myelin, an extension of the oligodendrocyte plasma membrane, wraps around axons to facilitate nerve conduction. Myelination is compromised in ATR-X intellectual disability syndrome patients, but the causes are unknown. We show that loss of ATRX leads to myelination deficits in male mice that are partially rectified upon systemic thyroxine administration. Targeted ATRX inactivation in either neurons or oligodendrocyte progenitor cells (OPCs) reveals OPC-intrinsic effects on myelination. OPCs lacking ATRX fail to differentiate along the oligodendrocyte lineage and acquire a more plastic state that favors astrocytic differentiation in vitro and in vivo. ATRX chromatin occupancy in OPCs greatly overlaps with that of the chromatin remodelers CHD7 and CHD8 as well as H3K27Ac, a mark of active enhancers. Overall, our data indicate that ATRX regulates the onset of myelination systemically via thyroxine, and by promoting OPC differentiation and suppressing astrogliogenesis. These functions of ATRX identified in mice could explain white matter pathogenesis observed in ATR-X syndrome patients.


Assuntos
Bainha de Mielina , Tiroxina , Proteína Nuclear Ligada ao X , Animais , Humanos , Masculino , Camundongos , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Bainha de Mielina/metabolismo , Neurogênese , Oligodendroglia/metabolismo , Tiroxina/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Neuroglia
9.
Toxicol Appl Pharmacol ; 479: 116733, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866708

RESUMO

Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 µg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 µg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.


Assuntos
Água Potável , Percloratos , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Ratos Sprague-Dawley , Ratos Long-Evans , Hormônios Tireóideos , Tiroxina/metabolismo , Tireotropina
10.
Front Endocrinol (Lausanne) ; 14: 1226887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850100

RESUMO

Objective: To evaluate the value of the thyrotropin-releasing hormone (TRH) test in the diagnosis of central hypothyroidism (CH) in patients with pituitary disease. Methods: Systematic evaluation of 359 TRH tests in patients with pituitary disease including measurements of thyroxine (T4), TBG-corrected T4 (T4corr), baseline TSH (TSH0) and relative or absolute TSH increase (TSHfold, TSHabsolute). Results: Patients diagnosed with CH (n=39) show comparable TSH0 (p-value 0.824) but lower T4corr (p-value <0.001) and lower TSH increase (p-value <0.001) compared to patients without CH. In 54% (42 of 78 cases) of patients with low T4corr, the CH diagnosis was rejected based on a high TSHfold. In these cases, a spontaneous increase and mean normalization in T4corr (from 62 to 73 nmol/L, p-value <0.001) was observed during the follow-up period (7.6 ± 5.0 years). Three of the 42 patients (7%) were started on replacement therapy due to spontaneous deterioration of thyroid function after 2.8 years. Patients diagnosed with CH reported significantly more symptoms of hypothyroidism (p-value 0.005), although, symptoms were reported in most patients with pituitary disease. The TRH test did not provide clinical relevant information in patients with normal T4 or patients awaiting pituitary surgery (78%, 281 of 359). There were only mild and reversible adverse effects related to the TRH test except for possibly one case (0.3%) experiencing a pituitary apoplexy. Conclusion: The TRH test could be reserved to patients with pituitary disease, low T4 levels without convincing signs of CH. Approximately 50% of patients with a slightly decreased T4 were considered to have normal pituitary thyroid function based on the TRH test results.


Assuntos
Hipotireoidismo , Doenças da Hipófise , Humanos , Hipertireoidismo/diagnóstico , Hipotireoidismo/diagnóstico , Doenças da Hipófise/diagnóstico , Tireotropina , Hormônio Liberador de Tireotropina/análise , Hormônio Liberador de Tireotropina/metabolismo , Tiroxina/análise , Tiroxina/metabolismo
11.
Endocrinology ; 164(12)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864846

RESUMO

The regulation of thyroid activity and thyroid hormone (TH) secretion is based on feedback mechanisms that involve the anterior pituitary TSH and medial basal hypothalamus TSH-releasing hormone. Plasma T3 levels can be "sensed" directly by the anterior pituitary and medial basal hypothalamus; plasma T4 levels require local conversion of T4 to T3, which is mediated by the type 2 deiodinase (D2). To study D2-mediated T4 to T3 conversion and T3 production in the anterior pituitary gland, we used mouse pituitary explants incubated with 125I-T4 for 48 hours to measure T3 production at different concentrations of free T4. The results were compared with cultures of D1- or D2-expressing cells, as well as freshly isolated mouse tissue. These studies revealed a unique regulation of the D2 pathway in the anterior pituitary gland, distinct from that observed in nonpituitary tissues. In the anterior pituitary, increasing T4 levels reduced D2 activity slightly but caused a direct increase in T3 production. However, the same changes in T4 levels decreased T3 production in human HSkM cells and murine C2C12 cells (both skeletal muscle) and mouse bone marrow tissue, which reached zero at 50 pM free T4. In contrast, the increase in T4 levels caused the pig kidney LLC-PK1 cells and kidney fragments to proportionally increase T3 production. These findings have important implications for both physiology and clinical practice because they clarify the mechanism by which fluctuations in plasma T4 levels are transduced in the anterior pituitary gland to mediate the TSH feedback mechanism.


Assuntos
Radioisótopos do Iodo , Tiroxina , Camundongos , Humanos , Animais , Suínos , Tiroxina/metabolismo , Tireotropina , Tri-Iodotironina/metabolismo , Retroalimentação , Hipófise/metabolismo
12.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834351

RESUMO

Pancreatic alterations such as inflammation and insulin resistance accompany hypothyroidism. Molecular iodine (I2) exerts antioxidant and differentiation actions in several tissues, and the pancreas is an iodine-uptake tissue. We analyzed the effect of two oral I2 doses on pancreatic disorders in a model of hypothyroidism for 30 days. Adult female rabbits were divided into the following groups: control, moderate oral dose of I2 (0.2 mg/kg, M-I2), high oral dose of I2 (2.0 mg/kg, H-I2), oral dose of methimazole (MMI; 10 mg/kg), MMI + M-I2,, and MMI + H-I2. Moderate or high I2 supplementation did not modify circulating metabolites or pancreatic morphology. The MMI group showed reductions of circulating thyroxine (T4) and triiodothyronine (T3), moderate glucose increments, and significant increases in cholesterol and low-density lipoproteins. Acinar fibrosis, high insulin content, lipoperoxidation, and overexpression of GLUT4 were observed in the pancreas of this group. M-I2 supplementation normalized the T4 and cholesterol, but T3 remained low. Pancreatic alterations were prevented, and nuclear factor erythroid-2-related factor-2 (Nrf2), antioxidant enzymes, and peroxisome proliferator-activated receptor gamma (PPARG) maintained their basal values. In MMI + H-I2, hypothyroidism was avoided, but pancreatic alterations and low PPARG expression remained. In conclusion, M-I2 supplementation reestablishes thyronine synthesis and diminishes pancreatic alterations, possibly related to Nrf2 and PPARG activation.


Assuntos
Hipotireoidismo , Iodo , Animais , Coelhos , Feminino , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2 , PPAR gama , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Tri-Iodotironina/metabolismo , Tiroxina/metabolismo , Colesterol
13.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762153

RESUMO

Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.


Assuntos
Hipotireoidismo , Tiroxina , Camundongos , Animais , Tiroxina/metabolismo , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Hipocampo/metabolismo , Suplementos Nutricionais , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
14.
Endocr Pract ; 29(11): 897-901, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633413

RESUMO

OBJECTIVE: To evaluate the effect of soy intake on levothyroxine (L-T4) absorption among different L-T4 formulations. METHODS: A PubMed/MEDLINE, Web of Science, and Scopus research was performed. Case reports, case series, and original studies written in English and published online up to November 30, 2022, were selected and reviewed. The final reference list was defined based on the relevance of each study to the scope of this review. RESULTS: Few data, mainly case reports, seemed to suggest a possible interference of soy products on L-T4 tablets absorption. However, the only prospective randomized cross-over study showed no differences in L-T4 absorption when L-T4 and soy isoflavones were assumed concomitantly. The very little data available on liquid L-T4 formulations did not allow for any conclusions to be made, even if a double-blind placebo-controlled trial showed no impaired L-T4 absorption. CONCLUSION: The inference of soy products on L-T4 absorption, if present, seems to have little clinical impact. Considering this fact, the Hamlet-like question whether soy milk interferes with L-T4 absorption remains unanswered.


Assuntos
Alimentos de Soja , Tiroxina , Humanos , Método Duplo-Cego , Composição de Medicamentos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Comprimidos , Tiroxina/metabolismo
15.
Br Poult Sci ; 64(6): 733-744, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565565

RESUMO

1. The objective of this study was to explore the mediating role of thyroid hormone-responsive protein (THRSP) in the response of chicken liver to fasting.2. A batch of 7-d-old chicks with similar body weights were randomly divided into the control group and the fasting group (n = 10). The control group was fed ad libitum, while the test group fasted for 24 h. The liver and pectoral muscle tissues were collected. Chicken primary hepatocytes or myocytes were treated with different concentrations of thyroxine, glucose, insulin, oleic acid and palmitic acid, separately. Chicken primary hepatocytes were transfected with THRSP overexpression vector vs. empty vector, and the cells were used for transcriptome analysis. The mRNA expression of THRSP and other genes was determined by quantitative PCR.3. The expression of THRSP in chicken liver and pectoral muscle tissues was significantly inhibited by fasting (P < 0.05). In chicken primary hepatocytes, the expression of THRSP was significantly induced by thyroxine (0.25, 0.5, 1 mmol/l), glucose (50, 100 mmol/l), and insulin (20 nmol/l), and was significantly inhibited by palmitic acid (0.125, 0.25 mmol/l). In the myocytes, expression of THRSP was significantly induced by thyroxine (0.25, 0.5, 1 mmol/l), glucose (50 mmol/l) and oleic acid (0.125, 0.25 mmol/l), was significantly inhibited by insulin (5 nmol/l) and was not significantly affected by palmitic acid.4. Transcriptome analysis showed that overexpression of THRSP significantly affected the expression of 1411 DEGs, of which 1007 were up-regulated and 404 were down-regulated. The GO term and KEGG pathway enrichment analyses showed that these DEGs were mainly enriched in the interaction between cytokine and cytokine receptor and its regulation and signal transduction, cell growth and apoptosis and its regulation, immune response and retinol metabolism.5. In conclusion, the THRSP gene mediates biological effects of fasting by influencing the expressional regulation of the genes related to biological processes such as cytokine-cytokine receptor interaction, cell growth and apoptosis, immune response, retinol metabolism, including TGM2, HSD17B2, RUNX3, IRF1, ANKRD6, UPP2, IKBKE, and PYCR1 genes, in chicken liver.


Assuntos
Insulinas , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Galinhas/genética , Galinhas/metabolismo , Receptores de Citocinas/metabolismo , Tiroxina/metabolismo , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Ácido Oleico/metabolismo , Citocinas/metabolismo , Vitamina A , Fígado/metabolismo , Jejum , Glucose/metabolismo , Insulinas/metabolismo
16.
Environ Sci Technol ; 57(25): 9130-9139, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37261382

RESUMO

Large numbers of pollutants competitively inhibit the binding between thyroid hormones and transthyretin (TTR) in vitro. However, the impact of this unintended binding on free thyroid hormones in vivo has not yet been characterized. Herein, we established a quantitative in vitro to in vivo extrapolation (QIVIVE) method based on a competitive binding model to quantify the effect of TTR-binding chemicals on free thyroid hormones in human blood. Twenty-five TTR-binding chemicals including 6 hydroxyl polybromodiphenyl ethers (OH-PDBEs), 6 hydroxyl polychlorobiphenyls (OH-PCBs), 4 halogenphenols, 5 per- and polyfluorinated substances (PFASs), and 4 phenols were selected for investigation. Incorporating the in vitro binding parameters and human exposure data, the QIVIVE model could well predict the in vivo effect on free thyroid hormones. Co-exposure to twenty-five typical TTR-binding chemicals resulted in median increases of 0.080 and 0.060% in circulating levels of free thyroxine (FT4) and free triiodothyronine (FT3) in the general population. Individuals with occupational exposure to TTR-binding chemicals suffered 1.88-32.2% increases in free thyroid hormone levels. This study provides a quantitative tool to evaluate the thyroid-disrupting risks of TTR-binding chemicals and proposes a new framework for assessing the in vivo effects of chemical exposures on endogenous molecules.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Pré-Albumina , Hormônios Tireóideos , Humanos , Ligação Competitiva , Bifenilos Policlorados/metabolismo , Pré-Albumina/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
17.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239994

RESUMO

Nutrition and energy levels have an important impact on animal growth, production performance, disease occurrence and health recovery. Previous studies indicate that melanocortin 5 receptor (MC5R) is mainly involved in the regulations of exocrine gland function, lipid metabolism and immune response in animals. However, it is not clear how MC5R participates in the nutrition and energy metabolism of animals. To address this, the widely used animal models, including the overfeeding model and the fasting/refeeding model, could provide an effective tool. In this study, the expression of MC5R in goose liver was first determined in these models. Goose primary hepatocytes were then treated with nutrition/energy metabolism-related factors (glucose, oleic acid and thyroxine), which is followed by determination of MC5R gene expression. Moreover, MC5R was overexpressed in goose primary hepatocytes, followed by identification of differentially expressed genes (DEGs) and pathways subjected to MC5R regulation by transcriptome analysis. At last, some of the genes potentially regulated by MC5R were also identified in the in vivo and in vitro models, and were used to predict possible regulatory networks with PPI (protein-protein interaction networks) program. The data showed that both overfeeding and refeeding inhibited the expression of MC5R in goose liver, while fasting induced the expression of MC5R. Glucose and oleic acid could induce the expression of MC5R in goose primary hepatocytes, whereas thyroxine could inhibit it. The overexpression of MC5R significantly affected the expression of 1381 genes, and the pathways enriched with the DEGs mainly include oxidative phosphorylation, focal adhesion, ECM-receptor interaction, glutathione metabolism and MAPK signaling pathway. Interestingly, some pathways are related to glycolipid metabolism, including oxidative phosphorylation, pyruvate metabolism, citrate cycle, etc. Using the in vivo and in vitro models, it was demonstrated that the expression of some DEGs, including ACSL1, PSPH, HMGCS1, CPT1A, PACSIN2, IGFBP3, NMRK1, GYS2, ECI2, NDRG1, CDK9, FBXO25, SLC25A25, USP25 and AHCY, was associated with the expression of MC5R, suggesting these genes may mediate the biological role of MC5R in these models. In addition, PPI analysis suggests that the selected downstream genes, including GYS2, ECI2, PSPH, CPT1A, ACSL1, HMGCS1, USP25 and NDRG1, participate in the protein-protein interaction network regulated by MC5R. In conclusion, MC5R may mediate the biological effects caused by changes in nutrition and energy levels in goose hepatocytes through multiple pathways, including glycolipid-metabolism-related pathways.


Assuntos
Fígado Gorduroso , Gansos , Animais , Gansos/genética , Fígado Gorduroso/metabolismo , Ácido Oleico/metabolismo , Tiroxina/metabolismo , Glucose/metabolismo , Perfilação da Expressão Gênica , Metabolismo Energético , Glicolipídeos/metabolismo
18.
Endocr J ; 70(8): 805-814, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37211401

RESUMO

The secretion of several hypothalamic peptide hormones is activated during the preovulatory period. Hypothalamic thyrotropin-releasing hormone (TRH) is one such hormone with reproductive and/or metabolic significance. However, it remains unclear whether thyroid-stimulating hormone (TSH)-producing thyrotrophs are produced during the preovulatory period. We previously found a transient increase in the expression of the nuclear receptor NR4A3, a well-known immediate early gene, in the proestrus afternoon in the anterior pituitary glands of rats. To investigate the relationship between TRH secretion and pituitary NR4A3 expression during proestrus, we used proestrus and thyroidectomized rats to identify NR4A3-expressing cells and examined the regulation of Nr4a3 gene expression via the hypothalamus-pituitary-thyroid (HPT) axis. The percentage of NR4A3-expressing cells increased in thyrotrophs at 14:00 h of proestrus. Incubation of rat primary pituitary cells with TRH transiently stimulated Nr4a3 expression. Thyroidectomy to attenuate the negative feedback effects led to increased serum TSH levels and Nr4a3 gene expression in the anterior pituitary, whereas thyroxine (T4) administration conversely suppressed Nr4a3 expression. Additionally, the administration of T4 or TRH antibodies significantly suppressed the increase in Nr4a3 expression at 14:00 h of proestrus. These results demonstrate that pituitary NR4A3 expression is regulated by the HPT axis, and that TRH stimulates thyrotrophs and induces NR4A3 expression during the proestrus afternoon. This suggests the potential involvement of NR4A3 in the regulation of the HPT axis during pre- and post-ovulatory periods.


Assuntos
Tireotrofos , Hormônio Liberador de Tireotropina , Feminino , Ratos , Animais , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo , Tireotrofos/metabolismo , Proestro , Tireotropina , Hipófise/metabolismo , Tiroxina/metabolismo
19.
Thyroid ; 33(4): 407-419, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37037032

RESUMO

Background: This review presents a timeline showing how technical advances made over the last seven decades have impacted the development of laboratory thyroid tests. Summary: Thyroid tests have evolved from time-consuming manual procedures using isotopically labeled iodine as signals (131I and later 125I) performed in nuclear medicine laboratories, to automated nonisotopic tests performed on multianalyte instruments in routine clinical chemistry laboratories. The development of isotopic radioimmunoassay techniques around 1960, followed by the advent of monoclonal antibody technology in the mid-1970s, led to the development of a nonisotopic immunometric assay methodology that forms the backbone of present-day thyroid testing. This review discusses the development of methods for measuring total thyroxine and triiodothyronine, direct and indirect free thyroid hormone measurements and estimates (free thyroxine and free triiodothyronine), thyrotropin (TSH), thyroid autoantibodies (thyroperoxidase, thyroglobulin [Tg] and TSH receptor autoantibodies), and Tg protein. Despite progressive improvements made in sensitivity and specificity, current thyroid tests remain limited by between-method differences in the numeric values they report, as well as nonspecific interferences with test reagents and interferences from analyte autoantibodies. Conclusions: Thyroid disease affects ∼10% of the U.S. population and is mostly managed on an outpatient basis, generating 60% of endocrine laboratory tests. In future, it is hoped that interferences will be eliminated, and the standardization/harmonization of tests will facilitate the establishment of universal test reference ranges.


Assuntos
Glândula Tireoide , Tri-Iodotironina , Humanos , Glândula Tireoide/metabolismo , Tri-Iodotironina/metabolismo , Tiroxina/metabolismo , Laboratórios , Testes de Função Tireóidea , Tireoglobulina/metabolismo , Tireotropina/metabolismo , Autoanticorpos/metabolismo
20.
Front Endocrinol (Lausanne) ; 14: 1115354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909326

RESUMO

Background: The relationship between thyroid function parameters and metabolic dysfunction-associated fatty liver disease (MAFLD) remains controversial. Additionally, little is known about the relationship between thyroid function parameters and MAFLD in the Chinese population. Methods: We conducted a retrospective cross-sectional study involving 177,540 individuals with thyroid function tests and MAFLD diagnosis from 2010-2018. The association between thyroid function parameters and MAFLD was evaluated on a continuous scale with restricted cubic spline (RCS) models and by the prior-defined centile categories with multivariable-adjusted logistic regression models. Thyroid function parameters included free triiodothyronine (FT3), free tetra-iodothyronine (FT4), and thyroid stimulating hormone (TSH). Additionally, fully adjusted RCS models stratified by sex, age, and location were studied. Results: In the RCS models, the risk of MAFLD increased with higher levels of FT3 when FT3 <5.58pmol/L, while the risk of MAFLD decreased with higher levels of FT3 when FT3 ≥5.58pmol/L (P nonlinearity <0.05). While RCS analysis suggested that the FT4 levels had a negative association with MAFLD (P nonlinearity <0.05), indicating an increase in FT4 levels was associated with a decreased risk of MAFLD. RCS analysis suggested an overall positive association between the concentration of TSH and MAFLD risk (P nonlinearity <0.05). The rising slope was sharper when the TSH concentration was less than 1.79uIU/mL, which indicated the association between TSH and MAFLD risk was tightly interrelated within this range. The multivariable logistic regression showed that populations in the 81st-95th centile had the highest risk of MAFLD among all centiles of FT3/TSH, with the 1st-5th centile as the reference category. Conclusions: Our study suggested nonlinear relationships between thyroid function parameters and MAFLD. Thyroid function parameters could be additional modifiable risk factors apart from the proven risk factors to steer new avenues regarding MAFLD prevention and treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Tiroxina/metabolismo , Estudos Retrospectivos , Estudos Transversais , Tireotropina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...